Brief introduction of YCL Lab research (7 min)
超音波研究簡介(適合普羅大眾):
本實驗室研究簡介(適合生科領域大一生) (2024.10 updated):
研究介紹(適合生科領域老師及研究生):
主題一: 精準調控微管系統
主題二: 超音波遺傳學
Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals
活體生物中精準地控制細胞內運輸及胞吞作用的新技術
Our understanding of how intracellular trafficking regulates cellular architecture and functions has largely relied on pharmaceutical inhibitors and gene manipulation of trafficking regulators. However, these methods often have off-target effects or require extensive preparation, limiting their use in studying dynamic transport networks and their roles in various disorders.
We introduce a versatile and powerful tool, RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks), which applies to nearly all transport vehicles, including lysosomes, endosomes, peroxisomes, post-Golgi vesicles, exocytic vesicles, recycling endosomes, synaptic vesicles, and centriolar satellites. RIVET enables rapid and reversible immobilization of vesicles within seconds, specifically targeting only the intended vesicles and associated vehicles. It also allows precise control of vesicles at different stages of endocytosis. For example, RIVET successfully blocks SARS-CoV-2 entry by inhibiting the early phase of ACE2-mediated endocytosis. Additionally, it controls intracellular trafficking in behaving animals, reversibly inhibiting synaptic transmission and locomotion in C. elegans.
RIVET is a powerful tool for studying a broad range of intracellular trafficking processes in various model organisms under different physiological and pathological conditions. It also holds promise for developing treatments for diseases such as tumors, neurodegeneration, developmental disorders, and infections where intracellular trafficking is disrupted.
Reference:
Chen SC, Zeng NJ, Liu GY, Wang HC, Lin TY, Tai YL, Chen CY, Fang Y, Chuang YC, Kao CL, Cheng H, Wu BH, Sun PC, Bayansan O, Chiu YT, Shih CH, Chung WH, Yang JB, Wang LHC, Chiang PH, Chen CH, Wagner OI, Wang YC, Lin YC#. (2024) Advanced Science Accepted "Precise control of intracellular trafficking and receptor-mediated endocytosis in living cells and behaving animals". In press. PDF
研究生命如何運作的新工具,“細胞運輸定身術”!
人體的細胞運作方式跟國家很像,為了要正常運作,細胞必須將物質運送到正確的位置,國家也要有物流遞送貨物到正確的收件人手上,這套運輸系統對細胞來說非常重要,舉凡胰島素的分泌、油脂代謝、吸收營養、神經傳導、甚至病毒入侵,幾乎所有跟生命運轉有關的事務都跟細胞運輸有關。那細胞怎麼精準的運送物質呢?它會將要運送的物質用小泡泡(細胞胞囊)包覆起來,然後叫負責的蛋白質(運動蛋白)帶著這些小泡泡走在細胞建構的軌道上(細胞骨架)運送到正確的目的地,這些小泡泡的運輸非常的快,若將小泡泡放大成一台轎車,它會用時速700公里的速度運送貨物!比人類最快的高鐵都還更快!不只快而已,細胞內已知有上千種小泡泡,細胞會像有強迫症一樣分門別類,將上千種小泡泡各自運輸不同的貨物到指定的目的地,比任何國家都更有效率的運作此複雜的運輸系統!為了要研究細胞如何運作運輸系統,傳統方法必須抽離掉或是抑制運送小泡泡相關的分子,這通常都曠日費時,感覺就像花三天才能封閉某一條道路,再觀察對整個國家的影響為何,非常沒有效率!
我們團隊發展出一個新的技術,取名叫RIVET(鉚釘系統; Rapid Immobilization of Target Vesicles on Engaged Tracks),它就像是細胞運輸定身術,可以在15秒內快速讓特定的運輸泡泡停止下來,甚至可以用開關燈的方式,照光讓設定好的運輸泡泡聽我們的命令反覆運行跟停止,這套系統可以讓幾乎所有種類的運輸泡泡停止下來,甚至可以用到整個生物中,利用光照讓生物體內的特定泡泡停止下來。我們利用這個系統成功地讓神經細胞及整隻線蟲體內的負責傳遞神經訊息的突觸泡泡停止下來,停止突觸泡泡的線蟲會像被麻醉一樣,無法動彈,但隨著關掉鉚釘系統,突觸泡泡會再度開始運作,線蟲又可以恢復運動能力!除此之外,新冠肺炎病毒也是靠特定的ACE2泡泡(胞吞作用)進到人體內感染人類,我們也成功利用鉚釘系統關閉ACE2泡泡運輸,抑制病毒入侵!
Actin filaments form a size-dependent diffusion barrier around centrosomes
分岔微絲在中心體周圍形成擴散隔膜
The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.
Reference:
Cheng H, Kao YL, Chen T, Sharma L, Yang WT, Chuang YC, Huang SH, Lin HR, Huang YS, Kao CL, Yang LW, Bearon R, Cheng HC, Hsia KC, Lin YC# (2022) “Actin filaments form a size-dependent diffusion barrier around centrosomes” EMBO Reports e54935. PDF
科普介紹:中心體有洞!?被我們測量出來了!
中心體(Centrosome)是細胞中一個重要的微小胞器,它可以幫助細胞生成重要的細胞骨架-微管(Microtubule),或是生成細胞的天線-初級纖毛(Primary cilium),並且調控細胞訊息傳遞、細胞分裂等許多功能。若中心體發生異常會導致非常多人類疾病如多囊性腎病變、視網膜色素變性、發育異常等。為了能正常作用,中心體必須在細胞質中聚集許多特殊的蛋白質來共同執行它的功能,但與其他細胞內胞器最大的不同處是,中心體並沒有膜的構造去與細胞質隔絕開來,因此長久以來科學界一個重要的未解問題是:中心體如何在細胞質中建構一個微環境(Microenvironment)去聚集特定分子?
過去研究指出中心體外圍的有聚集非常濃密的中心粒周物質(Pericentriolar matrix)、分岔肌動蛋白纖維(Branched actin filaments)、微管(Microtubule),我們假設這些濃密的物質可能會幫助中心體與細胞質阻隔開來。為了回答此問題,我們發展了一套系統可以偵測不同大小的蛋白質從細胞質擴散進中心體的速度。結果發現直徑小於5.8奈米的分子可以自由進出中心體,但是更大的分子無法進到中心粒周物質及更核心的區域,推測中心體外圍有一個只讓小分子進出的擴散隔膜結構(Diffusion barrier),我們更發現利用藥物破壞微管不會影響分子進出中心體,但破壞分岔肌動蛋白纖維會讓更大的分子(7.6奈米)可以進到中心體核心,證明分岔肌動蛋白纖維是構成中心體擴散隔膜的主要成分。這個擴散隔膜會在細胞分裂的後期(Anaphase)時變得更加緊密,只讓更小的分子進出中心體。我們還發現中心體會藉此擴散隔膜調控大的蛋白質複合體如γ微管蛋白環狀複合體(γ-tubulin ring complex)進出中心體,並藉此調控微管的生長。
Precise control of microtubule disassembly in living cells
精準控制微管溶解技術
Our understanding of how microtubules (MTs) regulate cellular architecture and functions is mainly dependent on MT-targeting agents (MTAs), which bind to MTs and perturb MT properties. However, the slow, inefficient, and non-selective process of MT disruption mediated by MTAs has prevented the dissection of causal relationships between targeted MT subtypes and cellular events. To address this long-standing issue, we describe here a series of tools that allow the efficient and rapid disassembly of specific MT subtypes and various MT-based structures, including tyrosinated MTs, primary cilia, mitotic spindles, and intercellular bridges. This is achieved by the rapid recruitment of an engineered MT-severing enzyme (dNSpastin3Q) onto target MTs via protein dimerization triggered by chemicals or light. Compared with MTA treatments, our system disassembles MTs more completely (disrupting ~93% of MTs in 1 hr), more quickly (8.53 to 9.67-fold faster than two widely used MTAs), and more specifically (disrupting only target MT subtypes) with efficient reversibility (The half time of onset and offset is 34.6 sec and 28.2 sec, respectively). Several types of long-lived MTs are more resistant to MTAs and often act as major railways to transport cargo and regulate organelle organization in cells. Therefore, the interpretations of how MTs regulate cellular architecture and activities in MTA-treated experiments need to be carefully re-examined. The swift and complete removal of the entire pool of MTs, regardless of their longevity, with our system enables us to address long-standing debates in biology by clearly distinguishing MT-dependent and -independent mechanisms. We found that MTs participate in the directed movement of post-Golgi vesicles and lysosomes as well as the fusion/fission of mitochondria. Intact MTs were required to maintain the perinuclear distribution of Golgi and endoplasmic reticulum tubules. Moreover, MTs were important for the formation of large lamellipodia and prevented the formation of contractile stress fibers and the incidental increase in cell rigidity. We also uncovered several MT-independent mechanisms, as MTs were shown to have minimal roles in filopodia formation and in maintaining the mitochondria membrane potential, as well as in initiating apoptosis. Our tools also have far-reaching implications for the development of treatments for various diseases such as tumors, neurodegeneration, and developmental disorders in which MT-mediated events have gone awry.
Reference:
Liu, G. Y., Chen, S. C., Lee, G. H., Shaiv, K., Chen, P. Y., Cheng, H., Hong, S. R., Yang, W. T., Huang, S. H., Chang, Y. C., Wang, H. C., Kao, C. L., Sun, P. C., Chao, M. H., Lee, Y. Y., Tang, M. J., & Lin, Y. C.* (2022). Precise control of microtubule disassembly in living cells. The EMBO journal, e110472. PDF
科普介紹:人體細胞沒了骨架變成殭屍!?
人體內有不同種類的骨骼,細胞內也有不同種類的細胞骨架,微管(microtubule),是其中一個重要的細胞骨架,科學界普遍認為不同種類的微管可以在細胞內執行不同的功能,但這七八十年來卻苦無沒有直接證據去支持這個論點,清大分醫所林玉俊副教授的研究團隊發展了一套技術,可以比傳統方法更快(快約十倍)並更完整地破壞特定種類的微管。如同教科書上寫的,破壞微管後,細胞內的許多結構如胞器等都會變得不正常,胞囊運輸也停滯下來,但是細胞卻可以維持此狀態好幾天都不會死亡,此外,本來以為沒有微管骨架的細胞會變得比較軟,但研究結果是大大相反地變硬!整體的樣態像是細胞失去了正常功能,但卻像殭屍一樣僵而不死!加上其他種種跡象都推測微管異常與細胞老化有關,此也或許是許多老年疾病如神經退化疾病的可能病因。目前此技術正繼續應用在線蟲及果蠅身上去探討失去微管對生物的直接影響為何。
Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein
超音波遺傳學:利用超音波控制經基因修改過的細胞活性
Ultrasound has been widely used for diagnostic imaging owing to its acoustic wave which can be non-invasively delivered into deep tissues in a focused manner. The global market of medical ultrasound is estimated to reach 6 billion USD by the year of 2021. Human tissues are largely insensitive to ultrasound illumination, which makes it extremely safe to conduct diagnostic imaging without inducing unnecessary side effects to illuminated regions. However, this advantage can be turned into a drawback if one tries to use ultrasound to manipulate cellular activities for therapeutic purposes. To circumvent this long-term technical limitation and also to extend the toolkit of medical ultrasound, we have established sonogenetic approaches to control cellular activities using medical ultrasound excitation. One strategy we make use of is the identification of the ultrasound-responsive proteins from mother nature. We recently focused on the membrane protein Prestin, which resides in the mammalian auditory systems and is important for high-frequency hearing. Inspired from the assumption that several parallel amino acid substitutions of Prestin may be involved in adaptive ultrasound hearing, we introduced two evolution-based mutants N7T and N308S into Prestin protein of non-echolocating mice. Heterogeneous expression of this construct has allowed mammalian cells to sense ultrasound stimulation, which evoked a calcium influx from the extracellular space into their cytosol under a low-frequency and low-pressure ultrasound condition. Moreover, pulsed ultrasound can also noninvasively stimulate target neurons expressing prestin(N7T, N308S) in deep regions of mouse brains. Our study delineates how an engineered auditory-sensing protein can cause mammalian cells to sense ultrasound stimulation. Moreover, our sonogenetic tools will serve as new strategies for noninvasive therapy in deep tissues.
由於對焦式超音波能夠非侵入性地穿透到深層組織,因此被廣泛應用於醫療檢測,其全球市場估計將於西元2021年達到60億美金。人類組織大多不會受到超音波照射影響,因此利用超音波影像作醫療檢測非常安全,但也因此很難利用照射超音波來非侵入式地調控細胞生理活性去達成不同的醫療目的。為了克服此長久以來的技術限制並擴展其相關應用,我們希望能發展嶄新的技術去利用照射超音波來精準控制細胞生理活性,而從自然界中找出能感受超音波刺激的蛋白質會是成功建立此超音波遺傳學系統的關鍵步驟。我們近期的研究聚焦在一個與哺乳類高頻聽覺有關的膜蛋白質Prestin上。過去的研究推測Prestin蛋白質於演化上的氨基酸變動可能於哺乳類的超音波聽覺中扮演重要角色,我們因此比對能感受超音波及無法感受超音波物種的Prestin蛋白質序列,發現第7個及第308個氨基酸在無法感應超音波物種中大多是天門冬醯胺,而在能感受超音波物種中則分別頻繁地置換為蘇氨酸及絲氨酸。而將N7T及N308S點突變放入老鼠(無法感受超音波的物種)的Prestin蛋白質中,結果發現此突變的Prestin蛋白能增強數倍人類細胞超音波感受能力,實驗還證明只需極低聲壓及3秒鐘低頻超音波照射即可刺激有表現Prestin(N7T, N308S)的人類細胞。藉此,我們更活化小鼠深層腦的神經細胞。我們的研究揭露生物如何感應超音波的詳細分子機制,並且將提供嶄新的方法去非侵入性地執行醫療目的。
Fig. 4 Schematic diagram of our sonogenetic tool.
Movie 5 Excitation of ultrasound induces calcium influx in cells expressing mPrestin(N7T, N308S).
Movie 6 Excitation of ultrasound vibrates mPrestin(N7T, N308S)-positive puncta.
Reference:
-
Huang YS*, Fan CH*, Hsu N*, Chiu NH, Wu CY, Guo V, Chiang YC, Hsu WC, Chen L, Lai CPK, Yeh CK.#, Lin YC.#. (2019) Nano Letters 20(2): 1089-1100 "Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein" (*Equal contribution; #Corresponding authors) PDF
-
Wu CY*, Fan CH*, Chiu NH, Lin YC#, Yeh CK#. (2020) Theranostics 10(8):3546-3561. "Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain". Accepted (*Equal contribution; #Corresponding authors) PDF
-
Fan CH*, Wei KC, Chiu NH, Wang HC, Wu RY, Ho YJ, Chan HL, Wang TSA, Huang YZ, Hsieh TH, Lin CH, Lin YC#, Yeh CK#. (2021). Nano Letters 21(14): 5967-5976 “Sonogenetic based neuromodulation for the amelioration of Parkinson's disease” (Equal contribution; #Corresponding authors) PDF
科普介紹:隔山打牛!利用超音波活化深層細胞並治療神經退化疾病
由於對焦式超音波能夠非侵入性地穿透到深層組織,因此被廣泛應用於醫療檢測,其全球市場估計將於西元2025年達到82億美金規模。人類組織大多不會受到超音波照射影響,因此利用超音波影像作醫療檢測非常安全,但也因此很難利用照射超音波來非侵入式地調控深層細胞生理活性去達成不同的醫療目的。
為了克服此長久以來的技術限制並擴展其相關應用,我們希望能發展嶄新的技術去利用照射超音波來精準控制細胞生理活性,而從自然界中找出能感受超音波刺激的蛋白質會是成功建立此超音波遺傳學系統的關鍵步驟。我們近期與清大葉秩光教授合作的研究聚焦在一個與哺乳類高頻聽覺有關的膜蛋白質Prestin上。過去的研究推測Prestin蛋白質於演化上的氨基酸變動可能於哺乳類的超音波聽覺中扮演重要角色,我們因此比對能感受超音波及無法感受超音波物種的Prestin蛋白質序列,發現第7個及第308個胺基酸在無法感應超音波物種中大多是天門冬醯胺(胺基酸簡寫N),而在能感受超音波物種中則分別頻繁地置換為蘇氨酸(胺基酸簡寫T)及絲氨酸(胺基酸簡寫S)。而將N7T及N308S點突變放入老鼠(無法感受超音波的物種)的Prestin蛋白質中,結果發現此突變的Prestin蛋白能增強數倍人類細胞超音波感受能力,實驗還證明只需極低聲壓及3秒鐘低頻超音波照射即可刺激帶有Prestin(N7T, N308S)的人類細胞產生鈣離子反應,而大量流入細胞中的鈣離子會促使神經細胞產生神經衝動。藉此,我們更成功利用超音波活化小鼠深層腦區的神經細胞。
藉此技術我們更嘗試用超音波治療帕金森氏症小鼠。經過連續八週超音波刺激帕金森氏症小鼠退化腦區後,有效地改善小鼠的運動失調病症,並且增加腦部多巴胺生成酵素及神經生長因子。目前團隊還在持續開發利用超音波控制血糖、毒殺癌細胞及調控免疫活性的相關技術。我們的研究揭露生物如何感應超音波的可能分子機制,並且將提供嶄新的方法去非侵入性地執行醫療目的。
媒體報導:
聯合新聞網:清大團隊用超音波活化腦細胞....(https://udn.com/news/story/7241/4327863)
經濟日報:清大團隊用超音波活化腦細胞....(https://money.udn.com/money/story/5612/4327863)
芋傳媒:清大用超音波活化腦細胞....(https://taronews.tw/2020/02/07/604620/)
清大影音
Spatiotemporally manipulating tubulin PTMs in cilia
Microtubules regulate various cellular activities including intracellular transport, cell division, and cell motility. Defects in microtubules lead to a variety of human diseases. Microtubules undergo different post-translational modifications (PTMs) including glutamylation, acetylation, and so on. Evidence mainly from in vitro studies reveals that PTMs directly modulate the structure and functions of purified microtubules. Despite it’s known over decades, the precise mechanism how microtubules spatiotemporally regulate cellular activities via altering their PTMs is still unclear, mainly due to a lack of techniques to spatiotemporally perturb tubulin PTMs in living cells. In this project, we developed a new method termed STRIP (SpatioTemporally Rewriting Intraciliary PTMs) enabling us to rapidly and locally rewrite tubulin PTMs in living cells. More specifically, we rapidly deplete one tubulin PTM, glutamylation, inside cilia by inducibly recruiting an engineered deglutamylase onto ciliary axonemes (Movie. 4). The resulting de novo deglutamylation negatively impacted axoneme elongation during ciliogenesis without noticeably affecting cilia length or other tubulin PTMs in the steady state. In addition, axonemal deglutamylation inhibits kinesin-2-mediated anterograde intraflagellar transport and Hedgehog signaling. Our study demonstrates direct evidence of the causal relationship between the polyglutamylation of ciliary axonemes and ciliary functions. By extending the repertoire of de novo PTM modifiers in the future, a thorough cracking of their pleiotropic roles may become possible.
Fig. 3 Schematic diagram of the STRIP (SpatioTemporal Rewriting of Intraciliary PTMs) approach.
Movie. 4. Rapid recruitment of cytosolic proteins onto ciliary axonemes in an inducible manner.
Reference:
Hong, S.R., Wang, C.L., Huang, Y.S., Chang, Y.C., Chang, Y.C., Pusapati, G.V., Lin, C.Y., Hsu, N., Cheng, H.C., Chiang, Y.C., Huang, W.E., Shaner, N.C., Rohatgi, R., Inoue T.,* Lin, Y.C.* (2018). Nature Communications 9, 1732 (*Corresponding authors) “Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. IF: 12.124; 3/64=4.69% in Multidisciplinary Sciences) PDF
媒體報導:
Manipulating cellular activities using an ultrasound-chemical hybrid tool
The development of approaches that control cellular activities has made it possible to dissect the underlying mechanism of cellular events and identify potential therapeutic applications. Sonogenetics, a newly emerging approach for activating cells by ultrasound, has drawn much attention. However, the existing approaches are only sufficient to modulate neural activity. We recently have overcome this technical limitation and successfully established a new system called SonoCID (Sonoporation triggered CID system) which uses focused ultrasound to precisely manipulate the cell physiology. Our system is able to control a wide variety of cellular activities in different types of cells. Using a short pulse of FUS, membrane impermeable chemical dimerizers can be introduced into living cells to regulate protein location and dimerization. We used the SonoCID to perturb the phospholipid metabolism on the plasma membrane in living cells within the timescale of minutes. This technique offers a powerful and versatile tool for using ultrasound to spatiotemporally manipulate the cellular physiology in living cells.
Reference:
Fan, C.H.*, Huang, Y.S.*, Huang, W.E.*, Lee, A.A.*, Ho, S.Y., Kao, Y.L., Wang, C.L., Lian, Y.L., Ueno, T., Wang, T.S.A., Yeh, C.K., Lin, Y.C. (2017) ACS Synthetic Biology 6: 2021-2027. "Manipulating cellular activities using an ultrasound-chemical hybrid tool" (* Equal contribution) (IF: 5.382; 7/77=9.09% in Biochemical Research Methods)
Fig. 2. Schematic representation of the SonoCID system
Movie. 3. Excitation of a short pulse of ultrasound triggers the protein dimerization and translocation in living cells.
Using Chemical biology approaches to study primary cilia and centrosome
YCL lab is focused on one fundamental question in cell biology field: how primary cilium gets organized and regulated its signaling. Primary cilium is an antenna-like protrusion presented on the apical surface of almost every cell type in our body (Fig. 1A), while functions as a sensory organelle that transduces extracellular cues to specific intracellular functions. Defects in cilia formation will consequently result in a wide spectrum of human disorders collectively known as ciliopathies (Fig. 1B). Previous studies in ciliary field have mainly relied on conventional genetic depletion of ciliary proteins that often inhibits ciliogenesis and impedes deeper analysis in primary cilia. The ability to visualize and manipulate ciliary composition specifically and inducibly in living cells thus has become crucial to understanding how the ciliary structure and signaling events are organized and regulated. To achieve this, we recently developed a “chemically inducible diffusion trap” (CIDT) technique that allows us to (1) quantify the entry kinetics of protein of interests (POIs) going into primary cilia, and (2) translocate POIs into primary cilia for manipulation of ciliary composition or signaling locally on a second timescale (movie). With this technique, we have visualized, for the first time, the ciliary entry of cytosolic proteins in real-time, and have further proved the existence of a molecular sieve-like diffusion barrier with a mesh radius of 8 nm at the ciliary base (Refs 1,2). Using this new technique combined with live-cell imaging and a variety of established ones, we have elucidated the molecular composition and dynamic activities of several ciliary signaling including three cilia-related subjects: ciliary diffusion barrier, axonemal post-translational modifications, and intraflagellar transport.
References:
-
Lin, Y.C., Niewiadomski, P.*, Lin, B.*, Nakamura, H.*, Phua, S.C., Jiao, J., Levchenko, A., Inoue, T., Rohatgi, R., Inoue, T. (2013). Nature Chemical Biology 9(7):437-443. “Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier”. (*Equal contribution) PDF
-
Lin, Y.C.,* Phua, S.C., Lin, B., Inoue, T*. (2013). Current Opinion in Chemical Biology 17(4):663-671. “Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches”. (*Corresponding authors) PDF
Fig. 1. (A) The structure of primary cilium. (B) Defects in primary cilia leads to numerous human disorders.
Movie. 2. Using CIDT to rapidly trap protein into primary cilia.